Generalized Continuous Time Bayesian Networks and their GSPN Semantics

نویسندگان

  • Daniele Codetta-Raiteri
  • Luigi Portinale
چکیده

We present an extension to Continuous Time Bayesian Networks (CTBN) called Generalized CTBN (GCTBN). The formalism allows one to model continuous time delayed variables (with exponentially distributed transition rates), as well as non delayed or “immediate” variables, which act as standard chance nodes in a Bayesian Network. The usefulness of this kind of model is discussed through an example concerning the reliability of a simple component-based system. The interpretation of GCTBN is proposed in terms of Generalized Stochastic Petri Nets (GSPN); the purpose is twofold: to provide a well-defined semantics for GCTBNin terms of the underlying stochastic process, and to provide an actual mean to perform inference (both prediction and smoothing) on GCTBN.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A GSPN Semantics for CTBN with Immediate Nodes

In this report we present an extension to Continuous Time Bayesian Networks (CTBN) called Generalized Continuous Time Bayesian Networks (GCTBN). The formalism allows one to model, in addition to continuous time delayed variables (with exponentially distributed transition rates), also non delayed or “immediate” variables, which act as standard chance nodes in a Bayesian Network. This allows the ...

متن کامل

Generalizing Continuous Time Bayesian Networks with Immediate Nodes

An extension to Continuous Time Bayesian Networks (CTBN) called Generalized CTBN (GCTBN) is presented; the formalism allows one to model, in addition to continuous time delayed variables (with exponentially distributed transition rates), also non delayed or “immediate” variables, which act as standard chance nodes in a Bayesian Network. The usefulness of this kind of model is discussed through ...

متن کامل

Mapping Activity Diagram to Petri Net: Application of Markov Theory for Analyzing Non-Functional Parameters

The quality of an architectural design of a software system has a great influence on achieving non-functional requirements of a system. A regular software development project is often influenced by non-functional factors such as the customers' expectations about the performance and reliability of the software as well as the reduction of underlying risks. The evaluation of non-functional paramet...

متن کامل

Performance Analysis of Computing Servers using Stochastic Petri Nets and Markov Automata

Generalised Stochastic Petri Nets (GSPNs) are a widely used modeling formalism in the field of performance and dependability analysis. Their semantics and analysis is restricted to “well-defined”, i.e., confusion-free, nets. Recently, a new GSPN semantics has been defined that covers confused nets and for confusion-free nets is equivalent to the existing GSPN semantics. The key is the usage of ...

متن کامل

A Semantics for Every GSPN

Generalised Stochastic Petri Nets (GSPNs) are a popular modelling formalism for performance and dependability analysis. Their semantics is traditionally associated to continuous-time Markov chains (CTMCs), enabling the use of standard CTMC analysis algorithms and software tools. Due to ambiguities in the semantic interpretation of confused GSPNs, this analysis strand is however restricted to ne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010